=] keyalins, veavueeli,
B |

Structures and Records in C++

'l
~
et

mmm Velalay- vinoyales-()
=—
N vonadle()
I
m -connmenti laton4+)
o E—— (])
. ()-+

Exploring user-defined data types for creating complex objects

IHlnnnn

| Lecture: Structures and
Records (C++)

What is a structure?

A user-defined data type that combines different fields into a single entity.
Analogous to a "record" in algorithms.

Why are they needed?

To model real-world objects: student, book, point, bus, and other complex entities
with multiple characteristics.

Structures allow you to create logically related groups of data, which makes code
more organized and understandable. This is a fundamental tool for building complex
programs.

Declaring and Using Structures

Struct Syntax

Structures are declared using the keyword struct. Unlike classes, all
members of a structure have a public access modifier by default.

®
This makes structures ideal for simple data containers where there is no - A
need to hide internal implementation. e/ » ®
@
4 o=

' | >) - .
| (truai) > mmmivoogr)—:il

| sttnucet)
. |] | s mmmic)3
w | —
strucct m—-1svaaer);))
| |3-telzioingnge—);
| m——)))--mtmme>)lasatn
| - .) _—_—_—_

® 7| — e
(sruct)— S LOr) : ;- =N
| - — —) 5
|
L
s

Example 1: Simple Structure

#include
using namespace std;

struct Student {
string name;
int age;
double gpa;

I

int main() {
Student s1 = {"Aigerim", 18, 3.9};
cout << sl.name << " (" <<sl.age << ") GPA =" << s1.gpa << end|;
return O;

}

This example demonstrates creating a Student structure with three fields and initializing it with a list of values.

ZN | Accessing Structure Members

Dot Operator (.)

@ Used for direct access to the members of a structure object. The most
common way to work with members.

IS E N T S S .

= I S N s -

EE EE N O e e N AI‘I‘OW Opel‘atOI‘ ('>)

4 _\,‘ -~ % Applied when working with a pointer to a structure. A convenient

paintat | gy alternative to dereferencing the pointer.

| N =
Y - — Example 2: Working with a pointer to a structure
// \ | IS §
/ \/ | 3

- - . \\-
f’\ . Student s2 = {"Dana", 19, 3.5};
Nl Student *p = &s2;
B ol
\ cout << p->name << endl; //access via ->
\-\. cout << (*p).gpa << endl; // alternative

The ->" operator is syntactic sugar and is equivalent to ‘(*p).member’, but is
significantly more convenient to use.

Structures as Function
Parameters

Pass by Value

When passing by value, an entire copy of the structure is created. This is safe,
but can be inefficient for large structures due to copying overhead.

Pass by Reference

A more efficient approach is to pass by reference. Use const to protect against
accidental changes if the function only reads the data.

Example 3: Function with a Structure Parameter

void printStudent(const Student &s) {
cout << s.name << " (" << s.age << ") GPA =" << s.gpa << end|;

}

Using const Student &s ensures efficiency (no copying) and safety (no accidental
changes).

:

Function
parameters

Arrays of Structures

Arrays of structures allow storing collections of homogeneous objects, which is

especially useful for working with lists of students, products, database records, and
other data sets.

Example 4: array of structures

Student groupl[3] = {
{"Ali", 18, 3.8},
{"Mira", 20, 3.6},
{"Omar", 19, 3.9}

b

for (inti=0;i<3;i++){
cout << grouplil.name << " " << grouplil.gpa << end|;

}

Advantages of Arrays of Applications:
Structures:

Lists of students in a group

e Uniform data storage Product catalogs

e Ease of processing in loops

Coordinates of points
o Efficient memory usage

Nested Structures

A structure can contain another structure as its field. This is a powerful mechanism for modeling complex real-world objects with a hierarchical data
structure.

S

-

Object Composition Practical Application

Nested structures allow you to create objects that consist of other A book contains a publication date, a student has an address, an order

objects, reflecting natural relationships in the problem domain. includes customer information — all these cases are resolved by nested
structures.

Example 5: Nested Structures

struct Date {
int day, month, year;
b

struct Book {
string title;
string author;
Date published;
I

Book b = {"C++ Basics", "Bjarne Stroustrup", {12, 5, 1985}};
cout << b.title << " published on " << b.published.day
<< "." << b.published.month << "." << b.published.year << end|;

Structures and Dynamic Memory

Dynamic memory allocation for structures is necessary when the size of data is
unknown at compile time or when objects need to be created during program

execution.

=g S

Memory Allocation Working with Data

Use the new operator to create a Access fields using the -> operator or
structure in dynamic memory pointer dereferencing

a

Memory Deallocation

Always call delete[] for arrays or delete for individual objects

Example 6: Dynamic Array of Structures

struct Student {
string name;
int age;
double gpa;

I

Student *students = new Student[2];
students[0] = {"Aset", 18, 3.4};
students[1] = {"Karina", 19, 3.7};

o _' IS Sl s for(inti=0;i<2;i++){
. ' S Sy cout << students[i]l.name << endl;

}

delete[] students; // Important: memory deallocation!

Lecture Summary

Data Unification

Structures are a means of combining
different data types into one logical
object, which simplifies working with
complex entities.

Versatility

Access Methods

Fields are accessed via the . (dot) and
-> (arrow) operators, depending on
whether you are working with an
object or a pointer.

Structures are convenient for creating arrays, dynamic collections, nested objects,
and passing complex data between functions.

Structures are a fundamental C++ tool for creating custom data types. They provide
the basis for object-oriented programming and allow you to write more organized and
readable code.

Review Questions

— o — o0 —

Arrays and Structures Parameter Passing

What is the fundamental difference When is it better to pass a structure
between a regular array and an array by value, and when by reference?

of structures? What advantages What factors influence the choice of
does using an array of structures parameter passing method?

provide for storing related data?

Structures and Classes

How are structures similar to classes, and how do they fundamentally differ? In
what cases is it preferable to use structures?

Additional Questions: Practical Tasks:

¢ How does list initialization of e Create a "Point" structure with x, y
structures work? coordinates.

e (Can one structure be copied to e Write a function to calculate the
another? distance between points.

¢ What happens to memory when ¢ |mplement sorting of an array of

passing by value? structures.

Practical Assignment

Ready to apply your knowledge in practice? | propose creating a more complex example to consolidate the material!

Assignment: "Bus Fleet" System

Create a Bus structure with fields: route
number, passenger capacity, current
number of passengers, status (en route/at
stop).

What you will learn:

e Designing data structures

o Working with arrays of structures

e Creating functions for data processing
e |nput data validation

Array and Search Extended Functionality

Create an array of several buses, Add functions for boarding/alighting
implement functions for searching by route passengers with capacity checks and
number and counting available seats in the displaying statistics for all routes.

entire bus fleet.

Additionally:

e Add a"Stop" structure

e Create a schedule

e Implement a seat reservation system
e Add data saving to a file

Good luck in learning C++ structures! This is a powerful tool that will open the way for you to create complex and efficient programs.

