
Structures and Records in C++
Exploring user-defined data types for creating complex objects



�  Lecture: Structures and 
Records (C++)

What is a structure?

A user-defined data type that combines different fields into a single entity. 
Analogous to a "record" in algorithms.

Why are they needed?

To model real-world objects: student, book, point, bus, and other complex entities 
with multiple characteristics.

Structures allow you to create logically related groups of data, which makes code 
more organized and understandable. This is a fundamental tool for building complex 
programs.



Declaring and Using Structures

Struct Syntax

Structures are declared using the keyword struct. Unlike classes, all 
members of a structure have a public access modifier by default.

This makes structures ideal for simple data containers where there is no 
need to hide internal implementation.

Example 1: Simple Structure

#include 
using namespace std;

struct Student {
    string name;
    int age;
    double gpa;
};

int main() {
    Student s1 = {"Aigerim", 18, 3.9};
    cout << s1.name << " (" << s1.age << ") GPA = " << s1.gpa << endl;
    return 0;
}

This example demonstrates creating a Student structure with three fields and initializing it with a list of values.



Accessing Structure Members

Dot Operator (.)

Used for direct access to the members of a structure object. The most 
common way to work with members.

Arrow Operator (->)

Applied when working with a pointer to a structure. A convenient 
alternative to dereferencing the pointer.

Example 2: Working with a pointer to a structure

Student s2 = {"Dana", 19, 3.5};
Student *p = &s2;

cout << p->name << endl;      // access via ->
cout << (*p).gpa << endl;     // alternative

The `->` operator is syntactic sugar and is equivalent to `(*p).member`, but is 
significantly more convenient to use.



Structures as Function 
Parameters

Pass by Value

When passing by value, an entire copy of the structure is created. This is safe, 
but can be inefficient for large structures due to copying overhead.

Pass by Reference

A more efficient approach is to pass by reference. Use const to protect against 
accidental changes if the function only reads the data.

Example 3: Function with a Structure Parameter

void printStudent(const Student &s) {
    cout << s.name << " (" << s.age << ") GPA = " << s.gpa << endl;
}

Using const Student &s ensures efficiency (no copying) and safety (no accidental 
changes).



Arrays of Structures
Arrays of structures allow storing collections of homogeneous objects, which is 
especially useful for working with lists of students, products, database records, and 
other data sets.

Example 4: array of structures

Student group[3] = {
    {"Ali", 18, 3.8},
    {"Mira", 20, 3.6},
    {"Omar", 19, 3.9}
};

for (int i = 0; i < 3; i++) {
    cout << group[i].name << " " << group[i].gpa << endl;
}

Advantages of Arrays of 
Structures:

Uniform data storage

Ease of processing in loops

Efficient memory usage

Applications:

Lists of students in a group

Product catalogs

Coordinates of points



Nested Structures
A structure can contain another structure as its field. This is a powerful mechanism for modeling complex real-world objects with a hierarchical data 
structure.

Object Composition

Nested structures allow you to create objects that consist of other 
objects, reflecting natural relationships in the problem domain.

Practical Application

A book contains a publication date, a student has an address, an order 
includes customer information 3 all these cases are resolved by nested 
structures.

Example 5: Nested Structures

struct Date {
 int day, month, year;
};

struct Book {
 string title;
 string author;
 Date published;
};

Book b = {"C++ Basics", "Bjarne Stroustrup", {12, 5, 1985}};
cout << b.title << " published on " << b.published.day 
 << "." << b.published.month << "." << b.published.year << endl;



Structures and Dynamic Memory
Dynamic memory allocation for structures is necessary when the size of data is 
unknown at compile time or when objects need to be created during program 
execution.

Memory Allocation

Use the new operator to create a 
structure in dynamic memory

Working with Data

Access fields using the -> operator or 
pointer dereferencing

Memory Deallocation

Always call delete[] for arrays or delete for individual objects

Example 6: Dynamic Array of Structures

struct Student {
    string name;
    int age;
    double gpa;
};

Student *students = new Student[2];
students[0] = {"Aset", 18, 3.4};
students[1] = {"Karina", 19, 3.7};

for (int i = 0; i < 2; i++) {
    cout << students[i].name << endl;
}

delete[] students; // Important: memory deallocation!



Lecture Summary

Data Unification

Structures are a means of combining 
different data types into one logical 
object, which simplifies working with 
complex entities.

Access Methods

Fields are accessed via the . (dot) and 
-> (arrow) operators, depending on 
whether you are working with an 
object or a pointer.

Versatility

Structures are convenient for creating arrays, dynamic collections, nested objects, 
and passing complex data between functions.

Structures are a fundamental C++ tool for creating custom data types. They provide 
the basis for object-oriented programming and allow you to write more organized and 
readable code.



Review Questions

Arrays and Structures

What is the fundamental difference 
between a regular array and an array 
of structures? What advantages 
does using an array of structures 
provide for storing related data?

Parameter Passing

When is it better to pass a structure 
by value, and when by reference? 
What factors influence the choice of 
parameter passing method?

Structures and Classes

How are structures similar to classes, and how do they fundamentally differ? In 
what cases is it preferable to use structures?

Additional Questions:

How does list initialization of 
structures work?

Can one structure be copied to 
another?

What happens to memory when 
passing by value?

Practical Tasks:

Create a "Point" structure with x, y 
coordinates.

Write a function to calculate the 
distance between points.

Implement sorting of an array of 
structures.



Practical Assignment
Ready to apply your knowledge in practice? I propose creating a more complex example to consolidate the material!

Assignment: "Bus Fleet" System

Create a Bus structure with fields: route 
number, passenger capacity, current 
number of passengers, status (en route/at 
stop).

Array and Search

Create an array of several buses, 
implement functions for searching by route 
number and counting available seats in the 
entire bus fleet.

Extended Functionality

Add functions for boarding/alighting 
passengers with capacity checks and 
displaying statistics for all routes.

What you will learn:

Designing data structures

Working with arrays of structures

Creating functions for data processing

Input data validation

Additionally:

Add a "Stop" structure

Create a schedule

Implement a seat reservation system

Add data saving to a file

Good luck in learning C++ structures! This is a powerful tool that will open the way for you to create complex and efficient programs.


